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LETTER TO THE EDITOR 

Dynamics of branched polymers in the reaction bath 

M Daoud 
Laboratoire Leon Brillouint, CEN Saclay, F-91191 Gif-sur-Yvette Cedex, France 

Received 30 November 1987 

Abstract. We consider the dynamics of a polydisperse sol made of randomly branched 
polymers near the gelation threshold. Assuming that the distribution is that of percolation, 
we review various possible hydrodynamic interactions, namely the Rouse limit, where no 
backflow is present, and the Zimm limit, where hydrodynamic interactions are present. In 
the latter case, we recover a recent conjecture by KertCsz for the divergence of the viscosity. 
In the former case, we recover the de Gennes-Stephen results. We discuss the viscoelastic 
behaviour at short timescales. 

The dynamical properties of large clusters in the vicinity of the percolation threshold 
have been widely studied in the last few years. The propagation of excitations along 
these fractal structures was considered (Alexander and Orbach 1982, Rammal and 
Toulouse 1983, Gefen et a1 1983) and a calculation of the exponent s of the viscosity 
was given by Stephen (1978) and de Gennes (1980a). However, the latter does not 
agree with most experimental results which lead to a value equal to half of the calculated 
one. Recently, Kertksz (1983) made the conjecture that s = v - t p  by considering the 
capacitance between clusters rather than the polarisability of the clusters. Such 
differences were also discussed by Coniglio and Stanley (1984) and Bunde et a1 (1985) 
in terms of ‘termite’ versus ‘ant’ diffusion. In the present letter, we would like to 
consider the problem from the point of view of the dynamics of polymer solutions. 
As we shall see, this will allow us to reconcile both results within different approxima- 
tions: basically, these correspond to the Rouse and Zimm approximations, where 
hydrodynamic interactions are either neglected or taken into account respectively (de 
Gennes 1979). In both cases, we may use the viscoelastic properties of polymers: if 
we apply a constant stress we expect for sufficiently long times, larger than a characteris- 
tic time T, to be discussed below, a viscous behaviour characterised by a viscosity 7. 
For shorter times, an elastic behaviour is expected, characterised by a modulus E. The 
crossover time T, is related to E and 7 by 

7 =ET,. (1) 
For scalar elasticity (Alexander 1985), the exponent t of the modulus E was 

conjectured by de Gennes (1976) and calculated within a Flory approximation by 
Family and Coniglio (1985) and Roux (1985). Their result is 

(2’) E - ,$-’ 

with 

I =  t / v =  d -2+4D,, (2) 

t Laboratoire commun CEA-CNRS. 
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where 6 is the radius of the largest polymers, d is the dimension of space and Dp is 
the fractal dimension of the percolating cluster. The latter was also calculated in the 
same approximation (Isaacson and Lubensky 1981, de Gennes 1980b) 

D,, = i ( d  +2) .  (3) 

In the following, we evaluate the viscosity exponent by calculating the time T, in 
different approximations. 

The most direct way is to assume that there are no hydrodynamic interactions 
between the various polymers present in the reaction bath. This corresponds to the 
Rouse approximation (Stockmayer 1976). The only possible motion for any polymer 
then is through the propagation of local motion (or excitation) along the macromolecule 
itself. This was considered recently by Alexander and Orbach (1982) in the case of 
the infinite cluster (i.e. the gel) and Gefen et a1 (1983) for the finite clusters (i.e. the 
sol). The longest time is readily calculated: 

T, = 6’1 D (4) 

where 6 is the characteristic length and corresponds to the largest polymers present 
and D is the diffusion coefficient along the polymer. Assuming the same fractal 
structure for the large polymers as for the gel, we get 

( 5 )  D - 6 P - r  

with p =  d - Dp’ Combining relations (4) and ( 5 )  we get 
T, - p - P  

where the weight-average molecular weight N ,  is proportional to the mean cluster 
size and is related to 6: 

Using equations ( 1 )  and (6) we get 

and thus the exponent for the divergence of the viscosity in this approximation is 

s = 2 - p .  (8) 

This expression was found by Stephen (1978) and de Gennes (1979) and does not 
seem to be in good agreement with experimental results for flexible polymers in the 
vicinity of the gelation threshold. It might be interesting to test it with more rigid 
structures such as silica (Schaefer 1985, Courtens er a1 1987). Relations (2) and (7) 
may also be tested through the frequency dependences of the out of phase and in-phase 
complex modulus. We expect 
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and, in the same way, 

(11) 

( d  = 3) .  ( 1  1’) 

i / ( Z - f i + i ,  E ( w )  - w 7 / ( w )  - w 

.-. w 3 / s  

Finally using relations (2) and (8) we get 

s+ i = 3 D p / 2 = 3 ( d  +2)/4.  (12) 

Let us now consider the opposite limit and assume that hydrodynamic interactions 
are present in the reaction bath between monomers. This corresponds to the Zimm 
limit (Stockmayer 1976, de Gennes 1979). In a Flory approximation this implies that 
the longest time has the following behaviour. 

Tz - td (13) 

- N:2. (13‘) 

s+ I =  d (14) 

Using relations ( 1 )  and (13 )  we get, instead of relation (12), 

which was conjectured by Straley (1980). Together with equations (2) and (3 )  this 
implies for the divergence of the viscosity 

5 = ( 2 - d  + D p ) / 2  (15) 

7 - Ni’8. (16) 

and thus we get instead of relation (7) 

Relation ( 1  5’) is a conjecture made recently by Kertksz and is in very good agreement 
with the experimental results for flexible polymers (Adam er a1 1979, 1985). The 
corresponding frequency-dependent properties at high frequencies: 

(wTz  >> 1 )  (17) 

(UT, >> 1 )  (18) 

7 1 ( w )  - w - f / d ,  w - 1 / 4  

E(,-,,)- - w 3 I 4  

are in reasonable agreement with recent observations by Durand er a1 (1986) on 
polyurethane polymers close to the gelation threshold. That hydrodynamic interactions 
are present in the reaction bath is not really surprising since we know that, close to 
the gelation threshold, there is a huge number of small molecules that are able to 
mediate the hydrodynamic interactions. However, it should certainly be interesting to 
check whether more rigid systems polymerising in an already viscous solvent might 
cross over to a Rouse-type hydrodynamics. 

Relation (13) allows us to analyse the viscoelastic behaviour of the polymers in 
the reaction bath. In order to do this let us consider the propagation of an information 
in the medium. We are immediately led to separate short times from long times. For 
short times, the information essentially remains on the same large cluster. For larger 
times, it travels between the large clusters. As mentioned above, the crossover 
time is T,. 

We consider the short scales first. Let us focus on a given large cluster. The 
information may be transmitted in two different ways. 
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(i)  Along the large macromolecule in a Rouse-type process. As discussed above, 
this leads to a time 

T l - ~ 2 / D - [ 2 - p ' i = [ D ~ .  ( 6 a )  

(i i)  A second way is via the smaller polymers interpenetrating the large one. The 
analysis of such motion may be done following the lines of Coniglio and Stanley (1984, 
hereafter referred to as c s ) .  The main difference between their analysis and the present 
one is that, because we consider here the short-time behaviour, we do not consider 
the motion between large polymers but, at this stage, only those where the information 
is recaptured by the initial large cluster. In 'zoological' terms, we consider the motion 
of a termite between two points on the same large cluster through smaller polymers. 
In principle, this is identical in essence to the motion between large clusters, with one 
important difference: the termite may leave the large cluster from a large number of 
sites, of the same order as its size N - [ " D .  

The time to come back onto the initial cluster is the same as calculated by cs: 

(19) 

d w = 2 - i  (20) 

= ( 2  + d - D p ) / 2  ( D p  > 2 ) .  (20') 

T' - [ *w  

with 

In order for the information to leave the cluster it has to visit N sites as mentioned 
above. Thus the total transmission time is 

T', - NT'-  [ D ~ + d w .  ( 2 1 )  
Because of the viscoelastic behaviour, we argue that both ways are equivalent so 

Comparing relations ( 6 0 )  and ( 2 1 )  we find 
that Tl and TI are of the same order of magnitude. 

D,=  D p + d ,  ( 2 2 )  

= ( 2 +  d + D p ) / 2  (Dp > 2 )  ( 2 2 ' )  

T = d - 2 + d w  ( 2 3 )  

= ( 3 d  - Dp - 2 ) / 2  (0, > 2 ) .  ( 2 3 ' )  

where we used relation (20) .  Comparing relations ( 6 a )  and ( 2 2 ) ,  we find 

Relations ( 2 3 )  and ( 2 2 )  have not previously been reported, to our knowledge. 
Equation (22')  reduces to the Alexander and Orbach (1982) conjecture in the Flory 
approximation. The consequence, as mentioned above, is that the characteristic longest 
time T, is 

td. (24) T, - 5"" - 
Note that it is much shorter than the step time T,  that we have just discussed. In 

order to understand this difference, we emphasise that so far we considered one single 
large polymer and we neglected any transfer of information to other polymers with 
the same size. Following cs, we know that this is possible through a fraction of the 
N sites corresponding to the unscreened perimeter, with Nu sites. Thus the crossover 
time T, is 

Tz- TINUIN ( 2 5 )  
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with Nu the mass of the unscreened perimeter: 

Nu - g d - d - .  (26) 

Combining relations (21), (25) and (26), we recover (24). Thus we do not expect 
the previous analysis to hold until TI, but only until T,. For larger times, we expect 
the cs analysis of the motion between large polymers to hold. This corresponds to a 
purely viscous behaviour. 

We considered two possible hydrodynamic regimes for polydisperse branched 
polymers in the reaction bath. In the Rouse limit, the excitations travel along the 
polymers. In the Zimm limit, the excitations are mediated by smaller polymers. We 
argued that the viscoelastic behaviour at short times corresponds to the coexistence 
of both processes. Assuming the characteristic times for both processes are of the 
same order leads to another conjecture for the exponents Dw and d ,  of the random 
walk in both problems (i.e. the ant and the termite, respectively). We find D, = Dp + d,, 
with Dp the fractal dimension of the polymers. Above a crossover time T, -- S d ,  with 
d the dimension of space, excitations travel between large polymers, and the pure 
viscous (termite) behaviour is expected. This implies that the fracton behaviour may 
be seen only indirectly in such systems, where hydrodynamic interactions are important. 
From this point of view, it should certainly be very interesting to look for systems 
where hydrodynamic interactions are screened. Vulcanised polymers might be candi- 
dates. 

The short-time analysis leads to a second characteristic time, T’ - g2-s - N5” w ,  below 
which one considers the motions of smaller polymers inside the larger ones. This may 
lead to interesting consequences for the dispersion relations. 

Finally, we note that the short-time analysis does not hold when polymers do not 
overlap. This is the case for narrow fractions of the polymers we discussed, and for 
rigid aggregates (Meakin 1983, Kolb et a1 1983) where the aggregates have basically 
the same size (Vicsek and Family 1984). In both cases there are no small polymers to 
mediate the interactions at short timescales. 

The author is greatly indebted to M Adam, J Teixeira and H E Stanley for interesting 
discussions and comments. 
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